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The Golden Age of AI

AI ready for 
widespread adoption?



Reproducing existing models is 
death by a thousand cuts: data 
ordering, software versions, 
hyperparmeters, random seeds, 
model weights.

3

The Dark Age of AI Infrastructure

Hand-implemented, 
impossibly slow methods 
to find good models.

Forcing users to wait for days to 
recover from faults.
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Deep Learning Today (For Everyone Else)

COLLECT DATA CHOOSE 
ARCHITECTURE

TRAIN
Model training
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REFINE / ITERATE

DATA MANAGEMENT CLUSTER MANAGEMENT
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Deep Learning Today (For Everyone Else)

Limited Support For:
‣ Teams of researchers, clusters of GPUs, many models

‣ Deployment, ops, and collaboration

‣ Data management or cluster management

Focus of existing 
open-source tools

Existing Tools (e.g., TensorFlow):
‣ Mostly focused on 1 researcher, training 1 model, on 1 GPU
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Most existing tools fall  
into one of two buckets:
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Too Generic 
(e.g., Spark, Sun Grid 

Engine)

Technical  
Point Solutions  

(e.g., TensorFlow, Horovod)



We need AI 
Infrastructure that is:
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Specialized for  
Deep Learning Holistic & Integrated

DL is both different 
and extremely important

Orders of magnitude wins in 
performance and usability!



Reproducing existing models is 
death by a thousand cuts: data 
ordering, software versions, 
hyperparameters, random seeds, 
model weights.
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The Dark Age of AI Infrastructure

Hand-implemented, 
impossibly slow methods 
to find good models.

Forcing users to wait for days to 
recover from faults.
Forcing users to wait for days to 
recover from faults.



Dave’s got a problem.

• Dave’s a super smart DL engineer.

• He’s got a brilliant model for style transfer that automatically 
makes every picture a dank meme.

• It takes two days for his model to converge on a couple of 
DGX-1s.

• Every time his model crashes he loses (on average) a day of 
work and 400 GPU-hours of compute time.

• This makes Dave sad.
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Dave’s got a solution!

• Dave wants to make sure he doesn’t lose work.

• In general, this is a “hard problem.”

• In Deep Learning - this isn’t so bad.  
Enter tf.saved_model.simple_save.

• So, Dave instruments his code, and the next time it 
crashes he loads his model using 
tf.saved_model.loader.load and keeps on 
training. 
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Only, he doesn’t.

• TensorFlow only saves: 
• Weights, optimizer state.

• Dave also needs 
• Input read position, random seeds, model definition, dependencies.

• Eventually, Dave writes a pile of code to save all this stuff.
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And Dave’s life still sucks

• Learns the hard way that checkpoints are really big and runs out of disk space.

• Teaches himself PagerDuty so that he can find out when his models crash and ssh back 
into the cluster to kick the models off.

• Loses his place in the queue. 

• Dave writes a pile of cron jobs to make sure his work is being done.
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What if Dave had holistic but specialized AI infrastructure?

• Fault tolerance would be taken care of (the right way) out of the box.

• The infrastructure would automatically take checkpoints.

• The infrastructure would monitor and retry failed jobs from latest checkpoint automatically.

• The infrastructure would manage its own checkpoint storage according to sane rules (“keep 
checkpoints with the best n validation errors”).

• The infrastructure could leverage checkpoints in other, surprising ways: to enable reproducibility, as 
a unit of scheduling/job migration, and to enable distributed training.

• All of this would be transparent to Dave.
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Reproducing existing models is 
death by a thousand cuts: data 
ordering, software versions, 
hyperparameters, random seeds, 
model weights.
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The Dark Age of AI Infrastructure

Hand-implemented, 
impossibly slow methods 
to find good models.

Forcing users to wait for days to 
recover from faults.

Hand-implemented, 
impossibly slow methods 
to find good models.



Dave trains his model
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Dave’s got a quality problem
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Dave’s memes

State of the art meme generation.

Dave’s memes aren’t dank enough.

So Dave starts tuning hyperparameters.
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Dave Discovers Grid Search
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Nested for loops FTW



Dave Discovers Grid Search

18The results are in.. (kinda)



Dave Discovers Grid Search
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That’s slow, let’s use $CLUSTER_RESOURCE_MANAGER

Runs everything in parallel!



Now Dave Has Two Problems

(1) Poor Infrastructure Support

• No fault tolerance

• No experiment tracking

• No metadata storage

• Missed optimization 
opportunities
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(2) Dumb Search Strategy

Dave is wasting > 99% of his 
time!



Hyperparameter Optimization
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Hyperband: Massively Parallel HPO [ICLR 2017]

22

Intuition:

•Examine many hyperparameter 
configurations at once

•Prune the configurations that are 
doing poorly (“early stopping”)

•Adaptively allocate more training 
resources to the configurations 
that are doing well

Speedups
>50x over Random

10x over Bayesian

✔ Lower final error

✔ Lower variance
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Unfortunately, Dave can’t Hyperband



Dave’s Infrastructure Dilemma
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Cluster Manager: 

Doesn’t understand the semantics  
of deep learning workloads

DL Frameworks: 

Built to train a single model for  
a single user on a single machine

What’s missing is holistic but specialized infrastructure
to provide the glue between these two



Reproducing existing models is 
death by a thousand cuts: data 
ordering, software versions, 
hyperparameters, random seeds, 
model weights.
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The Dark Age of AI Infrastructure

Hand-implemented, 
impossibly slow methods 
to find good models.

Forcing users to wait for days to 
recover from faults.

Reproducing existing models is 
death by a thousand cuts: data 
ordering, software versions, 
hyperparameters, random seeds, 
model weights.



Dave is taking over for Leslie
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Dave is assigned to a new project. A former 
colleague, Leslie, trained a production model six 
months ago. Dave wants to explore new modeling 
techniques to see if he can improve the model’s 
performance.

He re-runs Leslie’s training script but get 
drastically higher error

Time to debug… 



What does Dave discover? 
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Training data: New samples recently added to Leslie’s directory

Hyperparameters: Leslie didn’t use default values, and instead specified batch size and learning 
rate at runtime

Validation Error Difference from Baseline

Baseline 30.3% 0.0%

Test1 (w/o fixes) 52.8% 22.5%

Test2 (includes fixes) 37.3% 7%



Ugh…Debug…
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Randomness is an intrinsic part of training

• e.g., weight initialization, shuffling and augmentation of datasets, noisy hidden layers (e.g. dropout)

• There are lots of them!

• ML framework dependent

• Must be recorded for reuse
Fix random seeds!



Leverage the power of containerization!

Ugh…Debug…
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Variation across specialized software

• Within versions  and across ML frameworks (TF, Keras, PyTorch)

• Underlying libraries (NumPy, cuDNN, CUDA, MKL)

Requires non-trivial engineering infrastructure



Ugh…Debug…
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Inherent System/Hardware Level Randomness

• non-deterministic GPU operations

• CPU multi-threading
UGH!!!

Validation Error Difference from Baseline

Baseline 30.3% 0.0%

Test1: No changes 52.8% 22.5%

Test2: Fix dataset + hyperparameters 37.3% 7.0%

Test3: Fix for libraries + random seeds 29.2% -1.1%



Fixing this, at last, we have perfect reproducibility
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But it requires CPU-only training with multi-threading disabled…SLOW!



What would an holistic but specialized DL reproducibility solution 
include?
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Feature Purpose

Version control for 
model definitions

Track changes in model architecture, optimization algorithm, data preprocessing 
pipeline

Metadata capture and storage
Record training + validation metrics, 

training logs, model hyperparameters

Dependency management Ensure ML framework and all dependencies are consistent between runs

Experiment seed management Generate the same pseudo-random values every run

Hardware resource flexibility Allow users to disable multi-threading and GPU usage, if desired



Conclusion

1. Dave’s life sucks because today’s DL 
Infrastructure tools are bad.

2. Existing tools: overly generic or narrow 
technical point solutions
3. What we need: tools that are specialized 
for DL and support DL workflows in a 
holistic, end-to-end way.
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Our platform gives AI teams the tools they 
need to train and deploy DL models 
dramatically more quickly.

Best-in-class AutoML capabilities

Automated GPU resource optimization

Reproducibility and experiment tracking

Supports cloud, on-premise, hybrid usage 

Works with TensorFlow, PyTorch, and Keras



Thank you!
neil@determined.ai

https://determined.ai
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