
Golden Age for AI, 
Dark Ages for AI Infrastructure
Neil Conway  
Co-Founder and CTO, Determined AI 
April 28, 2019

2

The Golden Age of AI

AI ready for
widespread adoption?

Reproducing existing models is
death by a thousand cuts: data
ordering, software versions,
hyperparmeters, random seeds,
model weights.

3

The Dark Age of AI Infrastructure

Hand-implemented,
impossibly slow methods
to find good models.

Forcing users to wait for days to
recover from faults.

4

Deep Learning Today (For Everyone Else)

COLLECT DATA CHOOSE
ARCHITECTURE

TRAIN
Model training

H.P. Tuning
DEPLOY

REFINE / ITERATE

DATA MANAGEMENT CLUSTER MANAGEMENT

5

Deep Learning Today (For Everyone Else)

Limited Support For:
‣ Teams of researchers, clusters of GPUs, many models

‣ Deployment, ops, and collaboration

‣ Data management or cluster management

Focus of existing
open-source tools

Existing Tools (e.g., TensorFlow):
‣ Mostly focused on 1 researcher, training 1 model, on 1 GPU

COLLECT DATA CHOOSE
ARCHITECTURE

TRAIN
Model training

H.P. Tuning
DEPLOY

REFINE / ITERATE

DATA MANAGEMENT CLUSTER MANAGEMENT

Most existing tools fall  
into one of two buckets:

6

Too Generic 
(e.g., Spark, Sun Grid

Engine)

Technical  
Point Solutions  

(e.g., TensorFlow, Horovod)

We need AI
Infrastructure that is:

7

Specialized for  
Deep Learning Holistic & Integrated

DL is both different 
and extremely important

Orders of magnitude wins in
performance and usability!

Reproducing existing models is
death by a thousand cuts: data
ordering, software versions,
hyperparameters, random seeds,
model weights.

8

The Dark Age of AI Infrastructure

Hand-implemented,
impossibly slow methods
to find good models.

Forcing users to wait for days to
recover from faults.
Forcing users to wait for days to
recover from faults.

Dave’s got a problem.

• Dave’s a super smart DL engineer.

• He’s got a brilliant model for style transfer that automatically
makes every picture a dank meme.

• It takes two days for his model to converge on a couple of
DGX-1s.

• Every time his model crashes he loses (on average) a day of
work and 400 GPU-hours of compute time.

• This makes Dave sad.

9

x

Dave’s got a solution!

• Dave wants to make sure he doesn’t lose work.

• In general, this is a “hard problem.”

• In Deep Learning - this isn’t so bad.  
Enter tf.saved_model.simple_save.

• So, Dave instruments his code, and the next time it
crashes he loads his model using
tf.saved_model.loader.load and keeps on
training.

10

Only, he doesn’t.

• TensorFlow only saves: 
• Weights, optimizer state.

• Dave also needs 
• Input read position, random seeds, model definition, dependencies.

• Eventually, Dave writes a pile of code to save all this stuff.

11

And Dave’s life still sucks

• Learns the hard way that checkpoints are really big and runs out of disk space.

• Teaches himself PagerDuty so that he can find out when his models crash and ssh back
into the cluster to kick the models off.

• Loses his place in the queue.

• Dave writes a pile of cron jobs to make sure his work is being done.

12

What if Dave had holistic but specialized AI infrastructure?

• Fault tolerance would be taken care of (the right way) out of the box.

• The infrastructure would automatically take checkpoints.

• The infrastructure would monitor and retry failed jobs from latest checkpoint automatically.

• The infrastructure would manage its own checkpoint storage according to sane rules (“keep
checkpoints with the best n validation errors”).

• The infrastructure could leverage checkpoints in other, surprising ways: to enable reproducibility, as
a unit of scheduling/job migration, and to enable distributed training.

• All of this would be transparent to Dave.

13

Reproducing existing models is
death by a thousand cuts: data
ordering, software versions,
hyperparameters, random seeds,
model weights.

14

The Dark Age of AI Infrastructure

Hand-implemented,
impossibly slow methods
to find good models.

Forcing users to wait for days to
recover from faults.

Hand-implemented,
impossibly slow methods
to find good models.

Dave trains his model

15

Dave’s got a quality problem

16

Dave’s memes

State of the art meme generation.

Dave’s memes aren’t dank enough.

So Dave starts tuning hyperparameters.

MEMEGEN-10

D
an

kn
es

s

Dave’s Model
MemeCeption v3
ResMeme-50
ResMeme-150

Dave Discovers Grid Search

17

Nested for loops FTW

Dave Discovers Grid Search

18The results are in.. (kinda)

Dave Discovers Grid Search

19

That’s slow, let’s use $CLUSTER_RESOURCE_MANAGER

Runs everything in parallel!

Now Dave Has Two Problems

(1) Poor Infrastructure Support

• No fault tolerance

• No experiment tracking

• No metadata storage

• Missed optimization
opportunities

20

(2) Dumb Search Strategy

Dave is wasting > 99% of his
time!

Hyperparameter Optimization

21

GPU hours
pr

ed
ic

ti
ve

 e
rr

or
50

Hyperband

Random

Bayesian

5

4 layer CNN

8 Hyperparameters

Image recognition

CIFAR10

Hyperband: Massively Parallel HPO [ICLR 2017]

22

Intuition:

•Examine many hyperparameter
configurations at once

•Prune the configurations that are
doing poorly (“early stopping”)

•Adaptively allocate more training
resources to the configurations
that are doing well

Speedups
>50x over Random

10x over Bayesian

✔ Lower final error

✔ Lower variance

23

Unfortunately, Dave can’t Hyperband

Dave’s Infrastructure Dilemma

24

Cluster Manager:

Doesn’t understand the semantics  
of deep learning workloads

DL Frameworks:

Built to train a single model for  
a single user on a single machine

What’s missing is holistic but specialized infrastructure
to provide the glue between these two

Reproducing existing models is
death by a thousand cuts: data
ordering, software versions,
hyperparameters, random seeds,
model weights.

25

The Dark Age of AI Infrastructure

Hand-implemented,
impossibly slow methods
to find good models.

Forcing users to wait for days to
recover from faults.

Reproducing existing models is
death by a thousand cuts: data
ordering, software versions,
hyperparameters, random seeds,
model weights.

Dave is taking over for Leslie

26

Dave is assigned to a new project. A former
colleague, Leslie, trained a production model six
months ago. Dave wants to explore new modeling
techniques to see if he can improve the model’s
performance.

He re-runs Leslie’s training script but get
drastically higher error

Time to debug…

What does Dave discover?

27

Training data: New samples recently added to Leslie’s directory

Hyperparameters: Leslie didn’t use default values, and instead specified batch size and learning
rate at runtime

Validation Error Difference from Baseline

Baseline 30.3% 0.0%

Test1 (w/o fixes) 52.8% 22.5%

Test2 (includes fixes) 37.3% 7%

Ugh…Debug…

28

Randomness is an intrinsic part of training

• e.g., weight initialization, shuffling and augmentation of datasets, noisy hidden layers (e.g. dropout)

• There are lots of them!

• ML framework dependent

• Must be recorded for reuse
Fix random seeds!

Leverage the power of containerization!

Ugh…Debug…

29

Variation across specialized software

• Within versions and across ML frameworks (TF, Keras, PyTorch)

• Underlying libraries (NumPy, cuDNN, CUDA, MKL)

Requires non-trivial engineering infrastructure

Ugh…Debug…

30

Inherent System/Hardware Level Randomness

• non-deterministic GPU operations

• CPU multi-threading
UGH!!!

Validation Error Difference from Baseline

Baseline 30.3% 0.0%

Test1: No changes 52.8% 22.5%

Test2: Fix dataset + hyperparameters 37.3% 7.0%

Test3: Fix for libraries + random seeds 29.2% -1.1%

Fixing this, at last, we have perfect reproducibility

31
But it requires CPU-only training with multi-threading disabled…SLOW!

What would an holistic but specialized DL reproducibility solution
include?

32

Feature Purpose

Version control for 
model definitions

Track changes in model architecture, optimization algorithm, data preprocessing
pipeline

Metadata capture and storage
Record training + validation metrics, 

training logs, model hyperparameters

Dependency management Ensure ML framework and all dependencies are consistent between runs

Experiment seed management Generate the same pseudo-random values every run

Hardware resource flexibility Allow users to disable multi-threading and GPU usage, if desired

Conclusion

1. Dave’s life sucks because today’s DL
Infrastructure tools are bad.

2. Existing tools: overly generic or narrow
technical point solutions
3. What we need: tools that are specialized
for DL and support DL workflows in a
holistic, end-to-end way.

33

34

Our platform gives AI teams the tools they
need to train and deploy DL models
dramatically more quickly.

Best-in-class AutoML capabilities

Automated GPU resource optimization

Reproducibility and experiment tracking

Supports cloud, on-premise, hybrid usage

Works with TensorFlow, PyTorch, and Keras

Thank you!
neil@determined.ai

https://determined.ai

mailto:neil@determined.ai
https://determined.ai

