Bloom:

Big Systems,
smat PrOgrams

Neil Conway
UC Berkeley

Distributed Computin

Programming Languages

Data prefetching
Register allocation

Loop unrolling

Function inlining
Optimization

Global coordination, waiting
Caching, indexing

Replication, data locality

Partitioning, load balancing

Undeclared variables

Type mismatches

Sign conversion mistakes

Warnings

Replica divergence
Inconsistent state
Deadlocks

Race conditions

Stack traces

gdb

Log files, printf
Debugging

Full stack visualization, analytics

Consistent global snapshots

Provenance analysis

Developer productivity Is a
major unsolved problem
In distributed computing.

oo,

@ We can do better!

KEEP

CALM
1

. provided we're
willing to make

GETS changes.
BETTER

Design Principles

HOW[IS!ABDEI1]

DIFFERENT
7

.‘.‘.4 : . > -

FROM A'GEOREPLICATED]
- DISTRIBUTED SERVICEDS

Centralized Computing

» Predictable latency
« No partial failure
* Single clock
* Global event order

Taking Order For Granted

Global event
order

Data (Ordered)
array of bytes

Compute (Ordered)
sequence of

Instructions

Distributed Computing

S S
N\ \ ’/

— >

Unpredictable latency
Partial failures
No global event order

Alternative #1.:
-nforce global event
order at all nodes
("Strong Consistency”)

Paxos Island

Alternative #1.:
-nforce global event
order at all nodes
("Strong Consistency”)

Problems:
 Avallability (CAP)
« Latency

Alternative #2:

—nsure correct behavior
for any network order
("Weak Consistency”)

Alternative #2:

—nsure correct behavior
for any network order
("Weak Consistency”)

Problem:
With traditional languages,
this is very difficult.

The "ACID 2.0" Pattern

Associativity:
Xo(YoZ)=(X0Y)oZ

‘batch tolerance”

Commutativity:

Xo0Y=YoX

‘reordering tolerance”

ldempotence:

XoX=X

‘retry tolerance’

“When | see patterns in my
programs, | consider it a sign
of trouble .. [they are a sign]
that I'm using abstractions
that aren't powerful enough.”
—Paul Graham

Design
Patterns

—

Theorems

—

Language &
Tool Support

Bounded Join Semilattices

A triple (S, L) such that:
— Sisaset

— LI'Is a binary operator
(“least upper bound”)
* Induces a partial order on
Sx<syitxuy=y

« Associative, Commutative,
and ldempotent

—-VXxeS 1L Ux=Xx

Bounded Join Semilattices

Lattices are objects that
grow over time.

An interface with an
ACID 2.0 merge() method

— Assoclative
— Commutative
— [dempotent

Time

AW

7
4

N

{a,b,cl
"

fabl Ibct Iacl
~“K\ ;" ‘K\ ,}' f

N/ v

/\\ // N |
AN

bi lal Il

Set
(Merge = Union)

Increasing Int
(Merge = Max)

false true
Ax A

/ \ / \
/ \ / \

false false true

Boolean
(Merge = On

CRDTs: Convergent
Replicated Data Types

—e.g., registers, counters,

sets, graphs, trees

Implementations:
— Statebox
— Knockbox
—riak_dt

INRIA

basho

Lattices represent
disorderly data.

How can we represent
disorderly computation?

f: S— T Is a monotone function iff:
Vabe S:a<:b= fla)<fb)

Time

Monotone function:

set — increase-int

Monotone function:
increase-int — boolean

[

/(‘\

7
7
7

fabl Ibct Iacl
AR A% A

{a,b,c
A

A Y
AN
AN

Ny
/\
\ , \\ , N
\ N /

bi Yaf lel

Set
(Merge = Union)

size()

3 true
to ?
> 2l > fallse
: f
:'1 fallse
Increasing Int Boolean

(Merge = Max)

(Merge = On)

Consistency
AS

Logical
Monotonicity

Lattices +
Monotone
Logic

Asynchronous
Messaging

No Risk of
Inconsistency

Non-
Monotone
Logic

Possible
Inconsistency

Asynchronous
Messaging

Non-
Monotone
Logic

Possible

Inconsistency

Asynchronous
Messaging

Insert
Coordination
(Paxos, ZK, ...)

Case Study

Cart
Replica

Add/Remove
ltems

_____ Checkout Cart
- >~ _Request Replica
~ ~ ~ ~
~ _ ~ -
Checkout —~———— Cart Lazy
Response

Replica Replication

ADD
{Iw: 2, €: 1}

Cart
Replica

Cart
Replica

Cart
Replica

,, ADD
{Iw: 2, €:1}

Cart
Replica

Cart
Replica

Cart
Replica

Cart
Replica

Cart
Replica

REMOVE
- Cart
{[W: 1] Replica

@ RESPONSE
< ______ ~

e c— e— — —

REQUEST

Cart
Replica

Cart
Replica

Cart
Replica

Questions

1. Will cart replicas eventually converge?
— "Eventual Consistency”

2. What will client observe on checkout?
— Goal: checkout reflects all session activity

3. To achieve #1 and #2, how much
ordering is required?

Design #1: Mutable State

Add(item x, count c):

Remove(item x, count c):

if kvs[x] exists:
old = kvs[x]
kvs.delete(x)
else
old = 0

kvs[x] = old + C

if kvs[x] exists:
old = kvs[x]
kvs.delete(x)
if/old > ¢
kvs[x] = old - c

AV

Non-monotonic!

Non-monotonic!

Add/Remove Car:t
ltems Replica
~~~~~ _ Checkout Calft
~ ~~ _Request Replica
~ - - . - \A
T Cart Lazy
Replica Replication
Conclusion:

Every operation might
require coordination!




Design #2: "Disorderly”

Add(item x, count c): Checkout():
Add x,c to add log Group add log by
item ID; sum counts.

Removel(item x, count c):
Group del log by

Add x,c to del_log item ID; sum counts.

‘ For each item, subtract

Non-monotonicl deletes from adds.




Monotonic

Add/Remove
ltems

Checkout Cart
&quest Replica
™~ '
— —
Cart Lazy
Replica Replication

Conclusion:
Replication is safe;
might need to
coordinate on checkout




Takeaways

» Avoid: mutable state update
Prefer: immutable data, monotone growth

* Major difference in coordination cost!

— Coordinate once per operation vs.
Coordinate once per checkout

« Wed like a type system for monotonicity



Language Design



Disorderly Programming

Order-independent: ~ The Daily Telegraph
default

Order dependencies:
explicit

Order as part of the
design process

Tool support

— Where Is order
needed? Why?




The Disorderly Spectrum

ASM Java Haskell

High-level
‘Declarative’
Powerful optimizers



Processes that
communicate via

asynchronous
message passing

\

Bloom = declarative agents

/N

Each process Logical rules describe
has a local computation and
database communication ("SQL++")




Each agent has a database of
values that changes over time,

All values have a location
and timestamp.




If RHS is true
(SELECT ..)

Then LHS is txue
(INTO 1lhs)

~

left-hand-side <=  right-hand-side

When and where
s the LHS true?



Temporal Operators

1. Same location,
same timestamp

2. Same location,
next timestamp

3. Different location,
non-deterministic
timestamp

Computation

Persistence
Deletion

Communication



Emit

Network
Messages
Receive Bloom Rules
Network |——> atomic, local,
Messages deterministic
Apply State
Updates
Observe Compute Act



Our First Program:
PubSub



Publisher

Publisher




class Hub

include Bud/ RUby DSL

end




class Hub
include Bud

state do

\ n
State declarations

end

end




class Hub
include Bud

state do

end

bloom do

end
end

— Rules




class Hub
include Bud Schema

state do \\\\\

table :sub, [ :client, :topic]

|

Persistent state: set
bloom do oOf subscriptions

end

end
end




class Hub )
include Bud  Network input, output

state do
table :sub, :client, :topic]

channel :subscribe, [: , :topic, :client]
channel :pub, : , :topic, :val]
channel :event, B , ‘topic, :val]

end /f

bloom do Destination address

end

end




class Hub
include Bud

state do
table
channel
channel
channel
end

bloom do
sub <=

end
end

:sub, :client, :topic]
:subscribe, [: , :topic, :client]
:pub, B , :topic, :val]
:event, B , ‘topic, :val]

Remember subscriptions

subscribe {|s| [s.client, s.topic]}




class Hub
include Bud

state do
table :sub, :client, :topic]
channel :subscribe, [: , :topic, :client]
channel :pub, B , :topic, :val]
channel :event, B , ‘topic, :val]
end ]
Send events to subscribers
bloom do

sub  <=/subscribe {|s| [s.client, s.topic]}
event <~ (pub * sub).pairs(:topic => :topic) {|p,s|

[s.client, p.ftopic, p.val] “\\\\
}

end Join(asinsaL) Joinkey

end




Result
Stream

“Push-Based™

Join On
Topic

Persistent
State .. )

3
‘e

Ephemeral
L~ Bvents

Subscribe To
Topic

Publish To
Topic




Result
Stream

“Pull-Based™

Join On
Topic

Persistent
State

Ephemeral
Events .

3
‘e

Subscribe To
Topic

Publish To
Topic




class Hub
include Bud

state do
table :sub, :client, :topic]
channel :subscribe, [: , :topic, :client]
channel :pub, B , :topic, :val]
channel :event, B , ‘topic, :val]
end
bloom do

sub <= subscribe {|s| [s.client, s.topic]}
event <~ (pub * sub).pairs(:topic => :topic) {|p,s|
[s.client, p.topic, p.val]
}
end
end




class HubPull
include Bud

state do
table :pub, :topic, :val]
channel :publish, B , :topic, :val]
channel :sub, B , :topic, :client]
channel :event, B , ‘topic, :val]
end
bloom do

pub <= publish {|p| [p.topic, p.vall]}
event <~ (pub * sub).pairs(:topic => :topic) {|p,s|
[s.client, p.topic, p.val]

¥

end
end




Suppose we keep only the most
recent message for each topic
("last writer wins”).

Rename:

Pu
Su

olis

0SC

N — Put

lbe — Get

—vent — Reply

Pub — DB

Topic — Key




class KvsHub

include

state do
table
channe
channe
channe

end

bloom do
db

Bud

:db,
1 :put,
1 :get,
1l :reply,

:key, :val]

K , ‘key, :val]

, ‘key, :client]
, ‘key, :val]

<+ put {|p| [p.key, p.val]}

db

<- (db * put).lefts(:key => :key)

reply <~\ (db * get).pairs(:key => :key) {|d,g|
lg.client, d.key, d.val]

Update = delete + insert

¥

end
end




Put To
Key

Get From
Key




Result
Stream

Non-Monotone!

Put To
Key

Get From
Key




class KvsHub

include

Bud

state do

table

:db,

channel :put,
channel :get,

:key, :val]
K , ‘key, :val]
, ‘key, :client]

channel :reply, , ‘key, :val]
end
bloom do
db <+ put {|p| [p.key, p.val]}
db  (<-)(db * put).lefts(:key => :key)

reply <~ (db * get).pairs(:key => :key) {|d,g|
lg.client, d.key, d.val]

¥

end
end




Takeaways

Bloom:
» Concise, high-level programs

« State update, asynchrony, and non-
monotonicity are explicit in the syntax

Design Patterns:

« Communication vs. Storage Actually
* Queries vs. Data - not so

* Push vs. Pull different!




Conclusion

Traditional languages are not a good fit for
modern distributed computing

Principle: Disorderly programs for
disorderly networks

Practice: Bloom

— High-level, disorderly, declarative
— Designed for distribution



Thank You!

Twitter: @neil conway

gem install bud
http.//www.bloom-lang.net

Collaborators:
Peter Alvaro Bill Marczak
Emily Andrews Joe Hellerstein
Peter Bailis Sriram Srinivasan

David Maler



