Bloom:

Big Systems, small Programs

Neil Conway UC Berkeley

Distributed Computing

Programming Languages

Data prefetching

Register allocation

Loop unrolling

Function inlining

Optimization

Global coordination, waiting

Caching, indexing

Replication, data locality

Partitioning, load balancing

Undeclared variables

Type mismatches

Sign conversion mistakes

Warnings

Replica divergence

Inconsistent state

Deadlocks

Race conditions

Stack traces

gdb

Log files, printf

Debugging

Full stack visualization, analytics

Consistent global snapshots

Provenance analysis

Developer productivity is a major unsolved problem in distributed computing.

We can do better!

... provided we're willing to make changes.

Design Principles

Centralized Computing

- Predictable latency
- No partial failure
- Single clock
 - Global event order

Taking Order For Granted

Distributed Computing

- Unpredictable latency
- Partial failures
- No global event order

Alternative #1:

Enforce global event order at all nodes ("Strong Consistency")

Alternative #1:

Enforce global event order at all nodes ("Strong Consistency")

Magasla Platanor MONGONISSI KALTSONISS Paxos Island

Problems:

- Availability (CAP)
- Latency

Alternative #2:

Ensure correct behavior for any network order ("Weak Consistency")

Alternative #2:

Ensure correct behavior for any network order ("Weak Consistency")

Problem:

With traditional languages, this is **very difficult**.

The "ACID 2.0" Pattern

Associativity:

$$X \circ (Y \circ Z) = (X \circ Y) \circ Z$$
"batch tolerance"

Commutativity:

$$X \circ Y = Y \circ X$$

"reordering tolerance"

<u>Idempotence:</u>

$$X \circ X = X$$
 "retry tolerance"

"When I see patterns in my programs, I consider it a sign of trouble ... [they are a sign] that I'm using abstractions that aren't powerful enough."

—Paul Graham

Bounded Join Semilattices

A triple $\langle S, \sqcup, \perp \rangle$ such that:

- *S* is a set
- □ is a binary operator ("least upper bound")
 - Induces a partial order on $S: x \leq_{\mathcal{S}} y$ if $x \sqcup y = y$
 - Associative, Commutative, and Idempotent
- $-\forall x \in S: \bot \sqcup x = x$

Bounded Join Semilattices

Lattices are objects that grow over time.

An **interface** with an ACID 2.0 **merge()** method

- Associative
- Commutative
- Idempotent

Time

Set (Merge = *Union*)

Increasing Int (Merge = *Max*) Boolean (Merge = *Or*)

CRDTs: Convergent Replicated Data Types

-e.g., registers, counters, sets, graphs, trees

Implementations:

- -Statebox
- Knockbox
- -riak_dt

Lattices represent disorderly data.

How can we represent disorderly computation?

 $f: S \rightarrow T$ is a **monotone function** iff:

 $\forall a,b \in S: a \leq_S b \Rightarrow f(a) \leq_T f(b)$

Time

Monotone function: set → increase-int

Monotone function: increase-int → boolean

Set (Merge = *Union*) Increasing Int (Merge = *Max*) Boolean (Merge = *Or*) Consistency
As
Logical
Monotonicity

Lattices + Monotone Logic

No Risk of Inconsistency

Asynchronous Messaging

Case Study

Questions

- 1. Will cart replicas eventually converge?
 - "Eventual Consistency"

- 2. What will client observe on checkout?
 - Goal: checkout reflects all session activity

3. To achieve #1 and #2, how much ordering is required?

Design #1: Mutable State

Add(item x, count c):

if kvs[x] exists: old = kvs[x] kvs.delete(x) else old = 0 kvs[x] = old + c

Remove(item x, count c):

Non-monotonic!

Non-monotonic!

Conclusion:

Every operation might require coordination!

Design #2: "Disorderly"

Add(item x, count c):

Add x,c to add_log

Add x,c to del_log

Non-monotonic!

Checkout():

Group add_log by
item ID; sum counts.

Group del_log by item ID; sum counts.

For each item, subtract deletes from adds.

Conclusion:

Replication is safe; might need to coordinate on checkout

Takeaways

Avoid: mutable state update
 Prefer: immutable data, monotone growth

- Major difference in coordination cost!
 - Coordinate once per operation vs.
 Coordinate once per checkout

We'd like a type system for monotonicity

Language Design

Disorderly Programming

- Order-independent: default
- Order dependencies: explicit
- Order as part of the design process
- Tool support
 - Where is order needed? Why?

The Disorderly Spectrum

High-level
"Declarative"
Powerful optimizers

Processes that communicate via asynchronous message passing

Bloom ≈ declarative agents

Each process has a local database

Logical rules describe computation and communication ("SQL++")

Each agent has a database of values that changes over time.

All values have a **location** and **timestamp**.

Temporal Operators

 Same location, same timestamp

Computation

Same location, next timestamp <+ Persistence

<- Deletion

3. Different location, non-deterministic timestamp

Communication

Observe

Compute

Act

Our First Program: PubSub

class Hub include Bud state do State declarations end end


```
class Hub
               Schema
 include Bud
 state do
                      [:client, :topic]
   table :sub,
 end
           Persistent state: set
 bloom do of subscriptions
 end
```

end

```
class Hub
               Network input, output
 include Bud
 state do
                      [:client, :topic]
   table :sub,
   channel :subscribe, [:@addr, :topic, :client]
   channel :pub,
                   [:@addr, :topic, :val]
   channel :event, [:@addr, :topic, :val]
 end
               Destination address
 bloom do
```

end end

```
class Hub
 include Bud
 state do
   table :sub, [:client, :topic]
   channel :subscribe, [:@addr, :topic, :client]
   channel :pub, [:@addr, :topic, :val]
   channel :event, [:@addr, :topic, :val]
 end
                Remember subscriptions
 bloom do
   sub <= subscribe {|s| [s.client, s.topic]}</pre>
 end
end
```

```
class Hub
 include Bud
 state do
   table :sub, [:client, :topic]
   channel :subscribe, [:@addr, :topic, :client]
                   [:@addr, :topic, :val]
   channel :pub,
   channel :event, [:@addr, :topic, :val]
 end
             Send events to subscribers
 bloom do
       <=/subscribe {|s| [s.client, s.topic]}
   event <~ (pub * sub).pairs(:topic => :topic) {|p,s|
     [s.client, p.topic, p.val]
                                       Join key
 end
                Join (as in SQL)
end
```



```
class Hub
 include Bud
 state do
   table :sub, [:client, :topic]
   channel :subscribe, [:@addr, :topic, :client]
   channel :pub, [:@addr, :topic, :val]
   channel :event, [:@addr, :topic, :val]
 end
 bloom do
   sub <= subscribe {|s| [s.client, s.topic]}</pre>
   event <~ (pub * sub).pairs(:topic => :topic) {|p,s|
     [s.client, p.topic, p.val]
 end
end
```

```
class HubPull
 include Bud
  state do
   table :pub, [:topic, :val]
   channel :publish, [:@addr, :topic, :val]
   channel :sub, [:@addr, :topic, :client]
   channel :event, [:@addr, :topic, :val]
 end
 bloom do
   pub <= publish { | p | [p.topic, p.val]}</pre>
   event <~ (pub * sub).pairs(:topic => :topic) {|p,s|
      [s.client, p.topic, p.val]
 end
end
```

Suppose we keep only the most recent message for each topic ("last writer wins").

Rename:

Publish → Put
Subscribe → Get
Event → Reply
Pub → DB
Topic → Key

```
class KvsHub
 include Bud
 state do
   table :db,
                [:key, :val]
   channel :put, [:@addr, :key, :val]
   channel :get, [:@addr, :key, :client]
   channel :reply, [:@addr, :key, :val]
end
 bloom do
   db <+ put {|p| [p.key, p.val]}
   db <- (db * put).lefts(:key => :key)
   reply \langle \sqrt{(db * get).pairs(:key => :key)} \{ | d,g |
     [g.client, d.key, d.val]
              Update = delete + insert
 end
end
```



```
class KvsHub
 include Bud
 state do
   table :db,
               [:key, :val]
   channel :put, [:@addr, :key, :val]
   channel :get, [:@addr, :key, :client]
   channel :reply, [:@addr, :key, :val]
end
 bloom do
   db <+ put {|p| [p.key, p.val]}
   db <- (db * put).lefts(:key => :key)
   reply <~ (db * get).pairs(:key => :key) { |d,g|
     [g.client, d.key, d.val]
 end
end
```

Takeaways

Bloom:

- Concise, high-level programs
- State update, asynchrony, and nonmonotonicity are explicit in the syntax

Design Patterns:

- Communication vs. Storage
- Queries vs. Data
- Push vs. Pull

Actually not so different!

Conclusion

Traditional languages are not a good fit for modern distributed computing

Principle: Disorderly programs for disorderly networks

Practice: Bloom

- High-level, disorderly, declarative
- Designed for distribution

Thank You!

Twitter: @neil_conway

gem install bud

http://www.bloom-lang.net

Collaborators:

Peter Alvaro

Emily Andrews

Peter Bailis

David Maier

Bill Marczak

Joe Hellerstein

Sriram Srinivasan